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Summary

This paper presents the forward position kine-
matics (given the eight joint angles, how to �nd
the Cartesian position and orientation of the end ef-
fector) and forward velocity kinematics (given the
eight joint rates, how to �nd the Cartesian transla-
tional and rotational velocities of the end e�ector)
for the redundant eight-degree-of-freedom Advanced
Research Manipulator II (ARMII).

Inverse kinematic solutions, required to control
the manipulator end e�ector, are also presented. For
a redundant manipulator, the inverse kinematic so-
lutions are not unique because they involve solving
for eight unknowns (joint angles for inverse position
and joint rates for inverse velocity) in only six equa-
tions. The approach in this paper is to specify two
of the unknowns and solve for the remaining six un-
knowns. Two unknowns can be speci�ed with two
restrictions. First, the elbow joint angle and rate
cannot be speci�ed. The elbow joint angle is deter-
mined solely by the commanded position of the end
e�ector. Likewise, the elbow joint rate is determined
by the commanded Cartesian translational velocity
of the end e�ector. Second, one unknown must be
speci�ed from the four-jointed wrist, while the sec-
ond unknown must be speci�ed from one of the arm
joints (elbow joint excluded) that translate the wrist.

The inverse position solution has eight solutions
for each set of two speci�ed joint angles. No alternate
inverse position solutions are presented for singular
con�gurations. In the inverse velocity problem, with
two speci�ed joint rates, the solution is unique pro-
vided that the Jacobian matrix is nonsingular. A
discussion of singularities is based on specifying two
joint rates and analyzing the reduced Jacobian ma-
trix. When the reduced Jacobian matrix is singular,
the generalized inverse can be used to move the ma-
nipulator away from the singularity region.

With two redundant joints, the methods of this
paper allow considerable freedom in solving the in-
verse kinematic problems. However, no control
strategies are developed to move the manipulator.
Control strategies are developed through ARMII
hardware experience.

A symbolic manipulation computer program was
used with existing standard methods in robotics for
the derivation of the equations. In addition, com-
puter simulations were developed to verify the equa-
tions. Examples demonstrate agreement between
forward and inverse solutions.

1. Introduction

The Advanced Research Manipulator II (ARMII),
a redundant research manipulator built by the AAI
Corporation for NASA, is well suited for space tele-
robotic applications and earth-based simulations of
space telerobotic applications. The ARMII has sev-
eral features that distinguish it from common indus-
trial manipulators: (1) two redundant degrees of free-
dom, (2) high payload-to-weight ratio with a 40-lb
design payload at a 60-in. reach, (3) modular joint
design, (4) high joint and link sti�ness with graphite-
epoxy composite link material, (5) continuous bi-
directional end-e�ector roll, (6) input and output
joint position encoders, and (7) space 
ight quali-
�able components. This paper presents kinematic
equations that can be implemented for basic control
of the ARMII.

NASA Langley Research Center has two ARMII's
for investigation of redundant dual arm control and
disturbance compensation for space operations. Fig-
ure 1 is a photograph and �gure 2 is a schematic
diagram of the ARMII, a redundant serial manip-
ulator with eight revolute joints. For general spa-
tial tasks, six degrees of freedom are required. The
ARMII has two redundant joints; with this extra
freedom, performance criteria can be satis�ed in ad-
dition to the commanded motion. The use of this
redundancy is not presented in this paper; how-
ever, references 1 to 8 present control methods for
redundant manipulators. These references use ma-
nipulator redundancy to satisfy performance crite-
ria, such as singularity avoidance, joint limit avoid-
ance, minimization of joint rates, minimization of
manipulator energy, and optimization of manipula-
tor con�guration.

The ARMII forward position, inverse position,
forward velocity, and inverse velocity problems are
formulated and solved in this paper. The forward
solutions are given for all eight degrees of freedom.
The term forward position transformation hereafter
indicates both position and orientation. The inverse
solutions involve six equations in eight unknowns.
The inverse solutions in this paper require that two
of the eight joint angles and rates are speci�ed and
then the remaining six joint angles and rates are
solved. Joint angles and rates for di�erent joints can
be speci�ed at each calculation step. Therefore, this
approach is more general than one that locks two
joints for all motion.

The forward position transformation is presented
after a discussion of kinematic simpli�cation. With
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the conventions of Craig (ref. 9), the Denavit-
Hartenberg parameters and the homogeneous
transformation matrices relating successive coordi-
nate frames are presented. The forward position
transformation is factored for e�cient computation.

The inverse position solutions are presented next.
Two angles are speci�ed and the remaining six are
solved. In this paper, one joint angle must be
speci�ed from the arm joints (1{3) and one from
the wrist joints (5{8). Choosing two wrist joints
is possible, but it leads to an underconstrained set
of equations for the arm joints, and these equations
are not dealt with in this paper. The elbow joint
angle �4 is solved independently of the remaining
joint angles and cannot be speci�ed. The length of
reach from the shoulder to the wrist determines the
elbow joint angle �4 with two possible con�gurations,
elbow up and elbow down. All twelve combinations
of speci�ed joints are allowed in the methods of this
paper. For each combination, eight inverse position
solutions exist.

The velocity solutions follow the position solu-
tions. The forward velocity solution is a linear trans-
formation from joint rates to Cartesian rates through
the Jacobian matrix. The 6 � 8 Jacobian matrix is
presented with respect to the base frame and with
respect to the elbow frame. The Jacobian matrix
with respect to the elbow frame involves less sym-
bolic terms than any other frame for the ARMII.
The computation of either Jacobian matrix involves
terms from the forward position transformation.

The resolved motion rate, or inverse velocity,
problem (ref. 10) is solved in a manner similar to
the inverse position problem. Two joint rates are
speci�ed, one from the arm joints (1{3) and one

from the wrist joints (5{8). The elbow joint rate _�4
cannot be speci�ed because it is uniquely determined
by the Cartesian translational velocity command.
The resolved motion rate problem is solved in closed
form for the Jacobian matrix with respect to f4g.
The inverse velocity solution is unique, provided that
the Jacobian matrix has full rank. In this paper,
singularity solutions are not presented; that is, the
Jacobian matrix is assumed to have a rank of six.

An identi�cation of ARMII singularities is based
on specifying two joint rates in the resolved motion
rate problem and analyzing the reduced Jacobian
matrix. Singularity conditions are presented for all
speci�ed joint combinations. No alternate singularity
solutions are developed.

Examples are presented to demonstrate the equa-
tions for all solutions given in this paper. For both

position and velocity kinematics, the forward solu-
tion output is the inverse solution input used to ver-
ify the results.

The methods used for derivation of the forward
kinematic equations in this paper are existing stan-
dard methods in robotics. A computer symbolic
manipulation program was used extensively for
derivation of the equations. In addition, computer
simulations were developed to verify the equations.
The inverse position solutions are original work based
on an adaptation and extension of reference 11. The
principal contribution of this paper is the �rst pre-
sentation of e�cient position and velocity kinematic
equations for the ARMII.

2. Symbols

ARMII Advanced Research Manipulator II

ai�1 Denavit-Hartenberg parameter

ci cos �i

di Denavit-Hartenberg parameter

d3; d5 Denavit-Hartenberg parameters,
�xed manipulator lengths

Jij element (i; j) of Jacobian matrix

J� Moore-Penrose pseudoinverse of
Jacobian matrix

Ki;KKi factored terms

L1 length from base to shoulder

L8 length from wrist to end e�ector

mJ Jacobian matrix expressed in fmg

mJLL lower left partition of mJ

mJLR lower right partition of mJ

mJLRj
mJLR with column j removed

mfJLRjg column j of mJLR

mJUL upper left partition of mJ

mJUR upper right partition of mJ

mfJ1ULig column i of mJUL with row 1
removed

mJ1ULi4
mJUL with columns i and 4, plus
row 1 removed

kPk Euclidean norm of vector P

fnPmg position vector from origin of fng
to fmg, expressed in fng

fPX ; PY ; PZg
T components of f0P8g
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n
mR orthonormal rotation matrix of

fmg relative to fng

Rij element (i; j) of 0
8
R

rij element (i; j) of 4
8
R

si sin �i

n
mT homogeneous transformation

matrix of fmg relative to fng

ti tan �i

fnvkg linear velocity from origin of fkg
with respect to f0g, expressed in
fmg

Xm;Ym;Zm unit direction vectors of fmg

mf _Xg mf _x; _y; _z; !x; !y ; !zg
T ;

ffmv8g; f
m
!8gg

T

�i�1 Denavit-Hartenberg parameter

�i joint angle i

f�g eight ARMII joint angles, arm,
and wrist (1{8)

f�gA f�1; �2; �3; �4g
T , four arm joint

angles (1{4)

f�gW f�5; �6; �7; �8g
T , four wrist joint

angles (5{8)

_�i joint rate i

f _�g eight ARMII joint rates, arm, and
wrist (1{8)

f _�gA arm joint rates

f _�gAi4 arm joint rates, excluding i and 4

f _�gW wrist joint rates

f _�gWj wrist joint rates, excluding j

fm!kg angular velocity of fkg with
respect to f0g, expressed in fmg

Mathematical notation:

f g Cartesian coordinate frame

f:; :; ::::; :gT vector components

Arm reference points:

S shoulder

E elbow

W wrist

Coordinate frames:

B base

H end e�ector

m dextral

0 base for simpli�ed kinematic
equations

4 elbow

8 end e�ector for simpli�ed kine-
matic equations

3. Kinematic Simpli�cation

3.1. Base and End-E�ector Coordinate

Frames

For telerobotic tasks, the position and orienta-
tion of the end-e�ector coordinate frame fHg are
controlled with respect to the base coordinate frame
fBg. The symbolic terms for the forward position
transformation and Jacobian matrix require signi�-
cantly less calculations when f8g is controlled with
respect to f0g. The origin of f8g is located at the
wrist point W and the origin of f0g is located at the
shoulder point S. (See �g. 3.) This removes L1 and L8

from the basic kinematic equations. No loss of gener-
ality is incurred because control of fHg with respect
to fBg is transformed to control of f8g with respect
to f0g through equations (1), (2), and (3). Given
B
HT,

0

8
T is calculated by the following equation:

0

8T = B
0 T

�1 B
HT

8

HT
�1 (1)

where

B
0
T�1 =

2
64
1 0 0 0
0 1 0 0
0 0 1 �L1

0 0 0 1

3
75

8

HT
�1 =

2
64
1 0 0 0
0 1 0 0
0 0 1 �L8

0 0 0 1

3
75

Given the Cartesian translational and rotational
velocities fHvHg and f

H
!Hg, the equivalent Carte-

sian velocity command at f8g is calculated as

f8!8g = fH!Hg (2)

f8v8g = fHvHg � f8!8g � f8PHg (3)

where f8PHg = f0; 0; L8g
T . A velocity transforma-

tion is not required between fBg and f0g because no
relative motion occurs. Equations (1), (2), and (3)
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are written for the inverse position and velocity prob-
lems. The same equations can be modi�ed for use in
the forward position and velocity problems.

3.2. Decoupling Position From

Orientation

An e�cient method for calculating kinematic so-
lutions of manipulators with spherical wrist mecha-
nisms is to decouple the position from the orienta-
tion. The arm joint angles position W in space and
the wrist joint angles orient f8g with respect to f4g.
The wrist joint rotations do not a�ect the positioning
of the arm joints. The ARMII has a four-axis spher-
ical wrist. Decoupling the position from the orienta-
tion applies to both position and velocity problems.

From reference 9, the general form of 0
8
T is

0

8T =

2
664

0

8
R f0P8g

0 0 0 1

3
775 (4)

Equation (4) gives the decoupling of the position
from the orientation as follows. Because the spheri-
cal wrist causes no translations, the position vector
f0P8g is a function of only the arm joint angles. The
manipulator orientation is provided by the wrist joint
angles relative to the orientation of f4g.

The terms for the forward position transforma-
tion, equation (4), are presented in the next section.
The position vector f0P8g is expressed as a function
of �1; �2; �3; and �4. The rotation matrix represent-
ing the manipulator orientation is given as a function
of all joint angles.

The Jacobian matrix used in velocity kinematics
has the following form when the wrist is spherical:

J =

2
664JUL 0

JLL JLR

3
775 (5)

The wrist joint rates do not a�ect the translational
Cartesian velocity of the end e�ector; thus, the
upper-right portion of the Jacobian matrix is the zero
matrix. The Cartesian angular velocity is a function
of all joint rates.

4. Position Kinematics

4.1. Forward Position Kinematics

4.1.1. Denavit-Hartenberg parameters. Fig-
ure 3 de�nes the coordinate frames for the ARMII.

W

E

S

d3

d5

X

X0 , X1,  X 2

Z0,  Z1

B

ZB

Z2

X3,  X4Z 4

Z
6

Z 3

X
6

X7,  X8 

X5,  Z7

XH

Z5,  Z8,  ZH

L1

L
8

Figure 3. ARMII coordinate frames. f�g=f0;0; 0; 0; 0; 0; 0; 0g.

The manipulator pose in �gure 3 is the initial po-
sition where all joint angles are 0. The X0; X1,
and X2 axes are coincident in the initial position.
The same is true of X3 and X4 and also X7 and X8.
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The Z2, Z4, and Z7 axes are directed outward, per-
pendicular to the plane of the paper. For these co-
ordinate frame de�nitions, the eight sets of Denavit-
Hartenberg parameters relating the nine successive
coordinate frames f0g through f8g are given in ta-
ble 1. With the simpli�cation presented in sec-
tion 3.1, the parameters d1 and d8 are both 0. In
�gure 3, the lengths from the base to the shoulder
and the wrist to the end e�ector are labelled L1 and
L8 to avoid confusion with the Denavit-Hartenberg
parameters d1 and d8. The joint variables �i are the
angles from Xi�1 to Xi measured about Zi. Joints
�ve, six, and seven require the o�sets given in table 1
for �5; �6, and �7 to be 0 in the initial con�guration
of �gure 3.

Table 1. Denavit-Hartenberg Parameters

i �i�1 ai�1 di �i

1 0 0 0 �1
2 90� 0 0 �2
3 �90� 0 d3 �3
4 90� 0 0 �4
5 �90� 0 d5 �5 � 90�

6 �90� 0 0 �6 + 90�

7 90� 0 0 �7 � 90�

8 90� 0 0 �8

Nominal values for the �xed lengths are d3 =
762:0 mm and d5 = 495:3 mm. The �xed length
L1 depends on the manipulator mounting and L8

depends on the end e�ector. Nominal joint limits
are given in appendix A.

4.1.2. Homogeneous transformation ma-

trices. The general homogeneous transformation
matrix (ref. 9) represents the position and orienta-
tion of fig with respect to fi � 1g and is given as
follows:

i�1
i T =

2
64

c�i �s�i 0 ai�1
s�ic�i�1 c�ic�i�1 �s�i�1 �dis�i�1
s�is�i�1 c�is�i�1 c�i�1 dis�i�1

0 0 0 1

3
75

(6)

The Denavit-Hartenberg parameters are substituted
into equation (6) to produce eight homogeneous
transformation matrices (given in appendix B) that
relate successive coordinate frames.

4.1.3. Forward position transformation.

The forward position transformation is a unique
mapping from joint space to Cartesian space:

0

8
T = 0

1
T(�1)

1

2
T(�2)

2

3
T(�3) : : :

7

8
T(�8) (7)

Substituting the matrices of appendix B into equa-
tion (7) yields

0

8
T =

2
64

KN s8 �KT c8 KT s8 +KN c8 KU �d3c1s2 � d5KA

KQs8 �KV c8 KV s8 +KQc8 KW �d3s1s2 � d5KC

KSs8 �KXc8 KX s8 +KSc8 KY d3c2 � d5K6

0 0 0 1

3
75

(8)

Common terms Ki, reported in appendix C, are fac-
tored out to reduce computation time. Based on de-
coupling the position from the orientation, discussed
in section 3.2, the forward position transformation is
partitioned at f4g as follows:

0

8T = 0

4T(�1; �2; �3; �4)
4

8T(�5; �6; �7; �8) (9)

where

0

4
T =

2
64
KB �KA K2 �d3c1s2
KD �KC K4 �d3s1s2
K5 �K6 s2s3 d3c2
0 0 0 1

3
75

4

8
T =

2
64
s5c6s8 �KK4c8 KK4s8 + s5c6c8 KK3 0

KK5 KK6 c6c7 d5
c5c6s8 +KK2c8 �KK2s8 + c5c6c8 KK1 0

0 0 0 1

3
75

The KKi terms are de�ned in appendix C.

4.1.4. Geometric arm joint redundancy.

Figure 4 presents the geometric interpretation of
the arm joint redundancy for the ARMII. The arm

S

E

W

r

{0P8}

Figure 4. Geometric interpretation of ARMII arm joint

redundancy.
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redundancy or self-motion is the rotation of the elbow
point E about f0P8g. A given Cartesian position and
orientation is reachable at any of these locations of E.
The radius of this rotation r varies with f0P8g. The
wrist joint redundancy provides a freedom in addition
to this self-motion behavior.

4.2. Inverse Position Kinematics

The inverse position problem is a mapping from
Cartesian space to joint angle space. This problem
is more complicated than the forward problem be-
cause it involves coupled transcendental equations
with multiple solutions. The inverse position prob-
lem calculates �1; �2; : : : ; �8 for the ARMII, when
given the following Cartesian position and orienta-
tion command 0

8
T:

0

8
T =

2
64
R11 R12 R13 PX
R21 R22 R23 PY
R31 R32 R33 PZ
0 0 0 1

3
75 (10)

Equation (8) expresses 0

8
T in terms of the unknown

joint angles. Equations (10) and (8) are equated to
obtain the inverse position equations. This equating
yields twelve scalar equations, only six of which
are independent. The six independent equations
come from the three position terms and three of the
possible nine rotation matrix terms.

The inverse position problem cannot be solved
for redundant manipulators without additional con-
straints. The speci�ed Cartesian location has six de-
grees of freedom but eight one-degree-of-freedom
joints. For the ARMII, the inverse position prob-
lem is an underconstrained set of six equations in
eight unknowns. In this section, the inverse position
problem is solved by specifying two joint angles.

Decoupling of the position from the orienta-
tion is utilized in the inverse solutions. The arm
joint angles are solved from the position command
f0P8g. The orientation command and the in
u-
ence of arm joint angles on the orientation are then
used to solve for the wrist joint angles. Therefore,
the inverse equations are two sets of three equa-
tions in four unknowns. One joint angle is speci�ed
from the arm joints and one from the wrist joints.
These methods are an adaptation and extension of
reference 11.

4.2.1. Inverse position solutions for arm

joint angles. Multiple solutions for f�1; �2; �3; �4g
T

are obtained in this section with f0P8g given. A
geometric approach is used to solve for �4 �rst,
independently of f�1; �2; �3g

T and f�5; �6; �7; �8g
T .

The vector f0P8g gives the position of the
wrist W with respect to the shoulder S, as shown
in �gure 5. This length-of-reach constraint �xes the
value of �4. The plane of triangle SEW is perpen-
dicular to Z4 for all manipulator con�gurations. The
law of cosines is used to solve �4 so that

kf0P8gk
2 = d2

3
+ d2

5
� 2d3d5 cos � (11)

where kf0P8gk
2 = P 2

X + P 2

Y + P 2

Z and � = � � �4.
The two �4 solutions to equation (11) are as follows:

�4 = � cos�1

"
kf0P8gk

2 � d2
3
� d2

5

2d3d5

#
(12)

These solutions correspond to the elbow up and
elbow down con�gurations.

θ4

4

φ

θ

W

E

S

d
5

X     
3

d 3

Z 4

X     4

{0P8}

Figure 5. Geometric method to calculate �4.

A geometric method is used to determine whether
a given position command is within the manipulator
workspace. The maximum reach occurs when d3 and
d5 align (�4 = 0). At the minimum reach, d5 folds
back upon d3 (�4 = �). Based on these conditions,
the following inequalities must be satis�ed for f0P8g
to be reachable:

jd3 � d5j � kf0P8gk � d3 + d5 (13)

This analysis ignores joint angle �4 limits, which
cause a more restricted workspace.

The remaining arm joint angles f�1; �2; �3g
T are

solved with algebra and trigonometry. The wrist
mechanism is spherical; thus f0P5g equals f0P8g.
Equations for f�1; �2; �3g

T are obtained from the
identity

f0P5g =
0

4
R(�1; �2; �3; �4)f

4P5g (14)

7



where f0P5g = fPX ; PY ; PZg
T is the position com-

mand and f4P5g = f0; d5; 0g
T is known. Equa-

tion (14) is rewritten as

2

0
R(�1; �2)f

0P5g =
2

4
R(�3; �4)f

4P5g (15a)

and expands to the following three scalar equations:

(PXc1 + PY s1)c2 + PZs2 = �d5c3s4 (15b)

�(PXc1 + PY s1)s2 + PZc2 = d3 + d5c4 (15c)

PXs1 � PY c1 = d5s3s4 (15d)

Equations (15b), (15c), and (15d) can apparently
be solved for the three unknowns (�1; �2; �3) because
�4 is known. However, squaring equations (15b),
(15c), and (15d) and adding them gives the cosine
law used previously to solve �4. Therefore, equa-
tions (15b), (15c), and (15d) are two independent
equations in three unknowns. One joint unknown is
speci�ed and the other two are solved. Three cases
are presented that correspond to speci�ed �1; �2;

or �3. For each case, �4 is known from equation (12).

Case 1. With �1 speci�ed, equation (15c), re-
written in the following equation, is solved for �2 as
follows:

E cos �2 + F sin �2 +G = 0 (16)

where

E = �PZ
F = PXc1 + PY s1

G = d3 + d5c4

Equations of the form in equation (16) arise often in
inverse position kinematics. The solution is obtained
with the tangent half-angle substitution (ref. 13).
Appendix D presents the two valid solutions for the
general form of equation (16) with this method.

A ratio of equations (15d) and (15b) is used to
solve for �3. The quadrant-speci�c inverse tangent
function is used to provide a unique result from the
following equation:

�3 = tan�1
�

PXs1 � PY c1

�(PXc1 + PY s1)c2 � PZs2

�
(17)

Two �4 solutions are given in equation (12). For each
�4, two �2 solutions are obtained from equation (16).
Each �2 has one �3 solution (eq. (17)). Therefore,
four solutions exist for the arm joint angles, with
the joint limits ignored. The four solutions have the
structure shown in table 2.

Table 2. Arm Joint Solutions With �1 Speci�ed

n �1 �2 �3 �4

1 �1 �21 �3 �4
2 �1 �22 ��3 + � �4
3 �1 �22 ��3 ��4
4 �1 �21 �3 + � ��4

Case 2. With �2 speci�ed, equation (15c) is solved
to yield two values of �1:

E cos �1 + F sin �1 +G = 0 (18)

where
E = PXs2

F = PY s2

G = d3 + d5c4 � PZc2

The angle �3 is again calculated by equation (17). Ta-
ble 3 gives the solution structure when �2 is speci�ed.

Table 3. Arm Joint Solutions With �2 Speci�ed

n �1 �2 �3 �4

1 �11 �2 �3 �4
2 �12 �2 ��3 �4
3 �11 �2 �3 + � ��4
4 �12 �2 ��3 + � ��4

Case 3. With �3 speci�ed, both �3 and �4 are
known. Equations (15) are rewritten to separate the
unknowns �1 and �2 as follows:

1

0
Rf0P5g =

1

4
Rf4P5g (19a)

PXc1 + PY s1 = �(d5c3s4)c2 � (d3 + d5c4)s2 (19b)

PY c1 � PXs1 = �d5s3s4 (19c)

PZ = (d3 + d5c4)c2 � (d5c3s4)s2 (19d)

Equation (19c) is solved for two values of �1, inde-
pendently of �2, as follows:

E cos �1 + F sin �1 +G = 0 (20)

where
E = PY

F = �PX
G = d5s3s4

Equation (19d) is solved for two values of �2, inde-
pendently of �1, as follows:

E cos �2 + F sin �2 +G = 0 (21)
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where

E = �(d3 + d5c4)

F = d5c3s4

G = PZ

Equations (19c) and (19d) are solved given each of
the two �4 values from equation (12). There are eight
possible solutions for sets of �1; �2; and �4, but only
four are valid. For each value of �4, equation (19b)

is used to determine which �2 value corresponds to
each �1. The solution structure is given in table 4.

Table 4. Arm Joint Solutions With �3 Speci�ed

n �1 �2 �3 �4

1 �11 �21 �3 �4
2 �12 �22 �3 �4
3 �12 + � ��22 �3 ��4
4 �11 + � ��21 �3 ��4

4.2.2. Inverse position solutions for wrist joint angles. This section presents an algebraic method

to solve the orientation part of the inverse position problem. Sets of f�5; �6; �7; �8g
T are solved given 0

8
R and

f�1; �2; �3; �4g
T .

The wrist joint angles orient f8g with respect to f4g. The orientation of f4g depends on f�1; �2; �3; �4g
T .

The wrist orientation command 4

8
R is calculated by the following equation:

4

8
R = 0

4
R�1 0

8
R =

2
4 r11 r12 r13
r21 r22 r23
r31 r32 r33

3
5 (22)

The elements of 0
4
R are given in equation (9b). The wrist inverse position equations are obtained by equating

4

8
R from equation (9) and equation (22). The unknowns are separated as follows:

4

6
R�1 4

8
R = 6

8
R (23)

The matrices for the left- and right-hand sides of equation (23) are2
4�r21c6 � (r31c5 + r11s5)s6 �r22c6 � (r32c5 + r12s5)s6 �r23c6 � (r33c5 + r13s5)s6

r21s6 � (r31c5 + r11s5)c6 r22s6 � (r32c5 + r12s5)c6 r23s6 � (r33c5 + r13s5)c6
r11c5 � r31s5 r12c5 � r32s5 r13c5 � r33s5

3
5

2
4 s7c8 �s7s8 �c7
�s8 �c8 0
�c7c8 c7s8 �s7

3
5

Equation (23) contains nine scalar equations in four unknowns, three of which are independent. For solution,

one unknown joint angle is speci�ed and the remaining three are calculated. Four cases are presented for

speci�ed �5; �6; �7; or �8.

Case 1. With �5 speci�ed, the joint angle �6 is solved from the (2,3) element of equation (23). The quadrant-

speci�c inverse tangent function is not required because �6 and �6+� are both valid solutions. The �6 solution

is

�6 = tan�1
�
r33c5 + r13s5

r23

�
(24)

A ratio of equation (23) elements (3,3) and (1,3) yields �7. The quadrant-speci�c inverse tangent function

must be used because one valid �7 value exists for each �6. Similarly, �8 is solved from the ratio of the

elements (2,1) and (2,2) of equation (23):

�7 = tan�1
�

r33s5 � r13c5

r23c6 + (r33c5 + r13s5)s6

�
(25)
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�8 = tan�1
�
(r31c5 + r11s5)c6 � r21s6

(r32c5 + r12s5)c6 � r22s6

�
(26)

Two wrist solutions exist for each f�1; �2; �3; �4g re-
sult. The solution structure is demonstrated in
table 5.

Table 5. Wrist Joint Solutions With �5 Speci�ed

n �5 �6 �7 �8

1 �5 �6 �7 �8
2 �5 �6 + � ��7 + � �8 + �

Case 2. With �6 speci�ed, the joint angle �5
is solved from the (2,3) element of equation (23).
The general solution for the following equation is
presented in appendix D. Both �5 results are valid.

E cos �5 + F sin �5 +G = 0 (27)

where
E = r33c6

F = r13c6

G = �r23s6

The wrist angles �7 and �8 are calculated by equa-
tions (25) and (26). One (�7; �8) pair exists for
each �5. The two wrist solutions are given in table 6.

Table 6. Wrist Joint Solutions With �6 Speci�ed

n �5 �6 �7 �8

1 �51 �6 �7 �81
2 �52 �6 ��7 �82

Case 3. With �7 speci�ed, the (3,3) element of
equation (23) gives the following equation:

E cos �5 + F sin �5 +G = 0 (28)

where
E = r13

F = �r33
G = s7

Appendix D presents a solution method for equa-
tion (28). �5 has two valid solutions. The angle �6 is
solved from the (2,3) element of equation (23) and is

�6 = tan�1
�
r33c5 + r13s5

r23

�
(29)

The quadrant-speci�c inverse tangent function used
to calculate one �6 is valid for each �5. The wrist
angle �8 is calculated by equation (26). One �8 exists
for each �5. Table 7 gives the two wrist solutions with
�7 speci�ed.

Table 7. Wrist Joint Solutions With �7 Speci�ed

n �5 �6 �7 �8

1 �51 �6 �7 �81
2 �52 ��6 �7 �82

Case 4. With �8 speci�ed, two values for �5 are
solved from the ratio of the (3,1) and (3,2) elements
of equation (23) as follows:

�5 = tan�1
�
r12 + r11t8

r32 + r31t8

�
(30)

Both �5 and �5 + � are valid results. The unique
�6 is solved by equation (29). The wrist angle �7 is
calculated by equation (25). For each �5 there is a
unique �7. Table 8 gives the two wrist solutions with
�8 speci�ed.

Table 8. Wrist Joint Solutions With �8 Speci�ed

n �5 �6 �7 �8

1 �5 �6 �7 �8
2 �5 + � ��6 + � �7 + � �8

4.2.3. Overall inverse position kinematic

solutions. The overall inverse position problem has
eight solutions: four arm joint solutions and two
wrist solutions for each. This is true for all speci�ed
arm and wrist joint angle combinations. The overall
solution structure is greater than the individual arm
joint and wrist joint tables indicate. Table 9 presents
the eight solutions obtained with �1 and �5 speci�ed.
Other combinations have a similar structure.

Table 9. Overall Solutions With �1 and �5 Speci�ed

n �1 �2 �3 �4 �5 �6 �7 �8

1 �1 �21 �3 �4 �5 �61 �71 �81

2 �1 �21 �3 �4 �5 �61 + � ��71 + � �81 + �

3 �1 �22 ��3 + � �4 �5 �62 �72 �82

4 �1 �22 ��3 + � �4 �5 �62 + � ��72 + � �82 + �

5 �1 �22 ��3 ��4 �5 ��62 ��72 �82 + �

6 �1 �22 ��3 ��4 �5 ��62 + � �72 + � �82

7 �1 �21 �3 + � ��4 �5 ��61 ��71 �81 + �

8 �1 �21 �3 + � ��4 �5 ��61 + � �71 + � �81
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5. Velocity Kinematics

5.1. Forward Velocity Kinematics

The forward velocity problem calculates the Cartesian velocities given the joint rates. The Jacobian matrix

is a linear operator that maps joint space velocities to Cartesian velocities as follows:

mf _Xg = mJf _�g (31)

In equation (31), mf _Xg is the vector of Cartesian linear and angular velocities of f8g with respect to f0g,
expressed in fmg. The dimension of f _�g is eight for the ARMII. The Jacobian matrix order is 6� 8.

5.1.1. Jacobian matrix expressed in f0g. The Jacobian matrix form for m = 0 is as follows:

0J =

2
666664

J11 J12 J13 J14 0 0 0 0
J21 J22 J23 J24 0 0 0 0
0 J32 J33 J34 0 0 0 0
0 J42 J43 J44 J45 J46 J47 J48
0 J52 J53 J54 J55 J56 J57 J58
1 0 J63 J64 J65 J66 J67 J68

3
777775 (32)

The upper-right Jacobian submatrix is the zero matrix because the spherical wrist joint rates _�5 through _�8 do

not a�ect the translational Cartesian velocity. The �rst column of the Jacobian matrix shows that _�1 a�ects

only 0 _x, 0 _y, and 0
!z . The term J61 equals 1 because _�1 adds directly to 0

!z in f0g coordinates. The term J62
equals 0 because _�2 does not in
uence

0
!z . Because of the decoupling of the position from the orientation, the

form of the Jacobian matrix is that of equation (5). The Jacobian matrix terms are

0JUL =

2
4 d3s1s2 + d5KC �d3c1c2 + d5c1K6 d5K2s4 �d5KB

�d3c1s2 � d5KA �d3s1c2 + d5s1K6 d5K4s4 �d5KD

0 �KZ d5s2s3s4 �d5K5

3
5 (33a)

0JLL =

2
4 0 s1 �c1s2 K2

0 �c1 �s1s2 K4

1 0 c2 s2s3

3
5 (33b)

0JLR =

2
4�KA �KH KN KU

�KC �KL KQ KW

�K6 KF KS KY

3
5 (33c)

The terms Ki from the forward position transformation (eq. (8)) are given in appendix C. The Jacobian

matrix 0J is independent of �8. However, if velocities are transformed into f0g from velocities commanded

in f8g, �8 is involved. Of course, the end-e�ector Cartesian velocity depends on all joint rates, including _�8.

5.1.2. Jacobian matrix expressed in f4g.
The simplest symbolic form of the ARMII Jacobian
matrix is presented in this section. This form is de-
sirable because it reduces computation time for real-
time manipulator operations. In addition, closed-
form solutions to the inverse Jacobian submatrices
are less complicated.

A manipulator Jacobian matrix can be calculated
by many methods. The vector cross-product method
in reference 11 provides good physical insight into the

problem. With this method, the simplest symbolic
form of the Jacobian matrix results when it is based
on the middle coordinate frame. When cross prod-
ucts are taken from one end to the other (from f0g
to f8g or vice versa), the terms compound greatly.
Starting from the middle and working to both ends
results in fewer Jacobian matrix terms.

With 0J given by equations (33), the Jacobian
matrix referenced to any frame fmg is found and
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Cartesian velocities expressed in f0g are transformed
into fmg as follows:

mf _Xg =

2
664
m
0
R 0

0 m
0
R

3
775 0f _Xg (34)

From properties of unitary orthogonal rotation
matrices,

m
0 R = 0

mR
�1 = 0

mR
T

Substituting equation (31) for both mf _Xg and 0f _Xg
in equation (34) and using the preceding rotation
matrix relationships yield the following equation:

mJ =

2
664
0
mR

T 0

0 0
mR

T

3
775 0fJg (35)

For the ARMII, f4g is the middle coordinate
frame. The general form of 4J is reported in equa-
tion (36), obtained from m = 4 in equation (35):

4J =

2
666664

J11 J12 0 J14 0 0 0 0
J21 J22 0 0 0 0 0 0
J31 J32 J33 0 0 0 0 0
J41 J42 J43 0 0 J46 J47 J48
J51 J52 J53 0 1 0 J57 J58
J61 J62 0 1 0 J66 J67 J68

3
777775
(36)

Equation (9) is a symbolic representation of the ma-
trix 0

4
R, and the 4J terms are given in the following

equation:

4J =

2
664
4JUL 0

4JLL
4JLR

3
775 (37)

where

4JUL =

2
4 �As2s3 �Ac3 0 �d5

d3s2s3s4 d3c3s4 0 0
d3s2c3 + d5K5 �Bs3 d5s4 0

3
5

4JLL =

2
4 K5 �s3c4 s4 0
�K6 s3s4 c4 0
s2s3 c3 0 1

3
5

4JLR =

2
4 0 c5 s5c6 KK3

1 0 �s6 c6c7
0 �s5 c5c6 KK1

3
5

A = d3c4 + d5

B = d3 + d5c4

When equations (33) and (37) are compared, a great
reduction in symbolic terms is evident.

The terms Ki and KKi from the forward posi-
tion transformation are given in appendix C. The
Jacobian matrix in f4g is independent of �1 and �8.
However, if velocities are transformed into f4g from
velocities commanded in f8g, �8 is involved; �1 is in-
volved when velocities are transformed into f4g from
velocities commanded in f0g.

5.1.3. Cartesian velocities expressed inf8g.
The Jacobian matrix in f0g involves fewer symbolic
terms than in f8g. In turn, 4J is signi�cantly sim-
pler than 0J. The symbolic form of 8J is not re-
ported. This section uses f8g as the coordinate frame
to present the necessary transformations for velocity
solutions.

The forward velocity problem using mJ yields
Cartesian rates expressed in fmg, where m = 0 or 4
in this paper. Equation (34) is used when these rates
are desired in f8g coordinates to give the following
equations:

f8v8g =
m
8
RT fmv8g

f8!8g =
m
8
RT fm!8g

9=
; (38)

The input to the inverse velocity problem is mf _Xg.
When these rates are expressed in f8g, equations (38)
are inverted before mJ is used in the inverse velocity
solution as follows:

fmv8g =
m
8
Rf8v8g

fm!8g =
m
8 Rf

8
!8g

9=
; (39)

The rotation matrices m
8
R are contained in equa-

tion (8) for m = 0 and equation (9) for m = 4.

5.2. Inverse Velocity Kinematics

The inverse velocity problem solves the linear
equation (31) for the joint rates when given a Carte-
sian velocity command. Standard linear solution
techniques cannot be used for a redundant manipu-
lator because the Jacobian matrix is nonsquare. The
inverse velocity problem for the ARMII is undercon-
strained with six equations in eight unknowns. Equa-
tion (31) can be inverted with the well-known gener-
alized inverse (ref. 13) of the Jacobian matrix. This
redundant solution minimizes the Euclidean norm of
the joint rates.
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General redundancy resolution techniques are not
presented in this paper. Instead, two joint rates are
speci�ed to solve the inverse velocity problem. The
remaining system is six equations in six unknowns.
A unique solution exists, when the manipulator is in
a nonsingular con�guration, i.e., when the Jacobian
matrix has full rank. A square set of linear equations
results only when one joint rate is speci�ed from
the arm joints and one from the wrist joints. This
behavior agrees with the inverse position behavior.
Specifying two wrist rates is possible, but it leads
to an underconstrained set of equations for the arm
joint rates, and these equations are beyond the scope
of this paper. Additionally, joint rate _�4 cannot be
speci�ed independently of the translational velocity
command because of the structure of the ARMII.
The length of reach from the shoulder to the wrist
determines the elbow joint angle �4. A derivative of
this constraint dictates that the elbow joint rate _�4
is uniquely determined by the Cartesian translational
velocity command.

5.2.1. Independent solution for _�4. The
joint rate _�4 is solved independently of the remaining
seven unknown joint rates from a time derivative of
equation (12). Equation (11) is rewritten as

P 2

X + P 2

Y + P 2

Z = d2
3
+ d2

5
+ 2d3d5c4 (40)

Simplifying the time derivative of equation (40) yields

the following solution for _�4:

_�4 =
�
�
PX

0 _x+ PY
0 _y + PZ

0 _z
�

d3d5s4
(41a)

In equation (41a), the Cartesian velocity command
is expressed in f0g. When the frame of expression

is f4g, _�4 is simpli�ed as shown in the following
equation:

_�4 =
�1

d5

�
4 _x+

A

d3s4

4 _y

�
(41b)

where A is de�ned following equation (37).

5.2.2. Inverse velocity solution for remain-

ing joint rates. The inverse velocity problem ex-
ploits decoupling of the position from the orientation.
Equation (31) is rewritten as

2
664
mJUL 0

mJLL
mJLR

3
775
(
f _�gA

f _�gW

)
=

(
fmv8g

fm!8g

)
(42)

The upper three equations of equation (42) are
solved to yield the unknown arm joint rates. Ac-

counting for the arm joint rates, the bottom three
equations are then used to �nd the unknown wrist
joint rates. The joint rate _�4 is known from equa-
tions (41). Therefore, column four of mJUL is sub-
tracted from the right-hand side of equation (42),

multiplying by _�4. The remaining system is three
equations in three unknowns. However, a unique
solution to this system does not exist because it is
always singular. The �rst two rows are dependent;
the rank is two and not three. Either row one or two
must be removed from the upper system of equations.
The remaining system is two equations in three un-
knowns, as for the arm angles in the inverse posi-
tion solution. In this paper, the solution is achieved
by specifying one joint rate from _�1; _�2, and _�3 and
then solving for the other two. The wrist joint rates
are solved with the three equations in four unknowns
from the bottom of equation (42), after the arm joint

rates are obtained. One joint rate from _�5; _�6, _�7,
and _�8 is speci�ed and the remaining three are solved
from the full-rank system, provided that the wrist is
not in a singular con�guration.

Solution in frame f0g is obtained as follows. If
_�i from the arm joints and _�j from the wrist are
speci�ed, columns i and j are removed from JUL4
and JLR. Joint rate _�i is likewise removed from
f _�gA4, and _�j is removed from f _�gW . In addition,
to achieve a consistent set of equations for the arm
joint unknowns, row 1 of JUL4 is removed; row 1
of the Jacobian matrix in f0g or f4g is symbolically
more complex than row 2. For m = 0, the solution
is obtained with any linear solution method used for
the following equations:

0
J1ULi4f _�gAi4 = f0v8g � _�i

0fJ1ULig � _�4
0fJ1UL4g (43a)

0
JLRjf _�gWj = f0!8g � _�j

0fJLRjg �
0
JLLf _�gA (43b)

The order of equation (43a) is 2� 2. Row 1 of f0v8g
is removed because the �rst equation of equation (42)
is removed. The order of equation (43b) is 3� 3
because the wrist equations are of full rank for the
general case.

Solution in frame f4g is obtained as follows. The
symbolic form of 4J is simpler than 0J, as demon-
strated in section 5.1.2. When f4g is used as the
reference frame, the linear equations are solved in
closed form. The resolved motion rate solution for
this case is given by the following equations:

f _�gAi4 =
4
J
�1

1ULi4

�
f4v8g � _�i

4fJ1ULig � _�4
4fJ1UL4g

�
(44a)

f _�gWj =
4
J
�1

LRj

�
f4!8g � _�j

4fJLRjg �
4
JLLf _�gA

�
(44b)
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Row 1 is removed from f4v8g in equation (44a).
The symbolic terms for the inverse reduced Jacobian
submatrices are given in appendix E, for i = 1; 2; 3
and j = 1; 2; 3; 4.

For either inverse velocity solution (eqs. (43) or
(44)), the commanded Cartesian velocities must be
transformed into f0g or f4g coordinates, unless they
are speci�ed in these frames. When Cartesian ve-
locities are expressed in f8g, this transformation is
accomplished with equations (39).

6. Manipulator Singularities

At a singular position, a manipulator loses one or
more degrees of freedom. A near singular con�gura-
tion mathematically requires in�nite joint rates for
certain �nite Cartesian velocity commands. Singu-
larity con�gurations for nonredundant manipulators
are determined by equating the Jacobian matrix de-
terminant to 0. For redundant manipulators, the Ja-
cobian matrix is nonsquare and thus its determinant
does not exist.

The least-squares redundant solution to the in-
verse velocity, or resolved motion rate problem, is
obtained by inverting equation (31).

f _�g = mJ� mf _Xg (45)

In equation (45),

J� = JT (JJT )�1 (46)

is the well-known pseudoinverse, or Moore-Penrose
inverse of the Jacobian matrix (ref. 5). The singu-
larities for a redundant manipulator can be found by
setting the determinant of (JJT ) equal to 0, as evi-
dent in equation (46). General redundant solutions
and singularities, however, are beyond the scope of
this paper.

The singularities reported in this section corre-
spond to the inverse velocity solutions presented in
section 5.2. Singularities are divided into arm singu-
larities and wrist singularities for manipulators with
spherical wrists. For the ARMII, arm singularities
are identi�ed from jmJULj and wrist singularities
from jmJLRj. The order of the reduced Jacobian
submatrices used in section 5.2 is 2 � 3 and 3 � 4.
When column 4 is removed from mJUL the determi-
nant is 0 for any manipulator con�guration. Thus,
joint angle �4 and joint rate _�4 cannot be speci�ed
in the inverse position and velocity solutions. From
equation (41a) or (41b), the joint rate _�4 is in�nite
when �4 = 0; �. This characteristic is a singularity
condition for all arm joints, as shown in table 10.

Table 10. Arm Joint Singularities

Singularity
i jmJULij conditions

1 d3d5c3s
2

4
�3 = ��

2

�4 = 0; �

2 d3d5s2s3s
2

4
�2 = 0; �
�3 = 0; �
�4 = 0; �

3 �d3s4KZ �4 = 0; �
KZ = 0

To �nd the arm joint singularity conditions,
columns i = 1; 2, and 3 are removed individually
from mJ1ULi4 and the remaining 2� 2 determinants
are set to 0. Similarly, columns j = 1; 2; 3, and 4
are removed from mJLRj; the 3� 3 determinants are
equated to 0 to yield the wrist joint singularities.

Given a speci�c Jacobian matrix, such as 0J, the
Jacobian matrix referenced to any other frame m is
found with equation (35). The singularity conditions
are identical for Jacobian submatrices expressed in
any coordinate frame because the determinant of a
matrix is invariant under rotation transformations.
In this paper, 0J and 4J are presented (eqs. (33)
and (37)). The submatrices of either Jacobian matrix
yield the arm joint singularities in table 10 and the
wrist joint singularities in table 11. The condition
KZ = 0 under i = 3 in table 10 is equivalent to

d3 = �d5
�
c4 +

c3s4
t2

�
.

Table 11. Wrist Joint Singularities

Singularity
j jmJLRjj conditions

1 �c7 �7 = ��
2

2 �c6s7 �6 = ��
2

�7 = 0; �

3 �s6c7 �6 = 0; �
�7 = ��

2

4 �c6 �6 = ��
2

The results of tables 10 and 11 are also singular-
ities for the inverse position solutions presented in
section 4.2. This section has identi�ed the ARMII
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singularities associated with specifying one arm joint
rate (excluding the elbow) and one wrist joint rate
and solving the inverse velocity problem. Alternate
solutions for the neighborhood of singularities are not
presented. An alternative is to use the generalized in-
verse (ref. 5) of the reduced 6 � 6 Jacobian matrix
at or near singularities. At a singularity, the rank of
this matrix is less than 6. The determinant is cal-
culated at each calculation step. If it is near 0, the
generalized inverse of the reduced Jacobian matrix
is used to avoid in�nite joint rates. This singularity
solution does not track the given velocity command
precisely, but it does move the manipulator out of
the singularity region so that the solution given in
this paper can be used again.

7. Examples

Examples are presented in this section for forward
position, inverse position, forward velocity, and in-
verse velocity problems to demonstrate the equations
in this paper. The units are millimeters, degrees,
millimeters per second, and radians per second for
length, angle, translational velocity, and rotational
velocity, respectively. The �xed manipulator lengths
for the examples are as follows:

L1 = 500:0

d3 = 762:0

d5 = 495:3

L8 = 470:0

7.1. Position Kinematic Examples

7.1.1. Forward position transformation.

Two examples for the forward position transforma-
tion are given. The �rst is the initial position shown
in �gure 3 and the second is a general con�guration.
For each example, the partitioned solution (eq. (9a)),
the transformation from wrist to shoulder (eq. (8)),
and the transformation from end e�ector to base
(modi�ed eq. (1)) are given.

Example 1. f�g = f0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0; 0:0gT

0

4T =

2
64
1:000 0:000 0:000 0:000
0:000 0:000 �1:000 0:000
0:000 1:000 0:000 762:000
0 0 0 1

3
75

4

8
T =

2
64
�1:000 0:000 0:000 0
0:000 0:000 1:000 495:3
0:000 1:000 0:000 0
0 0 0 1

3
75

0

8
T =

2
64
�1:000 0:000 0:000 0:000
0:000 �1:000 0:000 0:000
0:000 0:000 1:000 1257:300
0 0 0 1

3
75

B
HT =

2
64
�1:000 0:000 0:000 0:000
0:000 �1:000 0:000 0:000
0:000 0:000 1:000 2227:300
0 0 0 1

3
75

Example 2. f�g = f10:0;20:0;30:0;40:0;50:0;60:0;�70:0;80:0gT

0

4T =

2
64
0:331 �0:717 0:613 �256:660
0:447 �0:453 �0:771 �45:256
0:831 0:529 0:171 716:046
0 0 0 1

3
75

4

8T =

2
64

0:447 �0:331 0:831 0
�0:771 �0:613 0:171 495:3
0:453 �0:717 �0:529 0
0 0 0 1

3
75

0

8
T =

2
64
0:979 �0:110 �0:172 �611:971
0:200 0:683 0:703 �269:549
0:041 �0:722 0:690 978:284
0 0 0 1

3
75

B
HT =

2
64
0:979 �0:110 �0:172 �692:958
0:200 0:683 0:703 60:660
0:041 �0:722 0:690 1802:788
0 0 0 1

3
75

7.1.2. Inverse position kinematics. The in-
put for this example is 0

8
T from example 2 in the

previous section. Eight solutions are calculated from
the equations in section 4.2. The angles �1 = 10 and
�6 = 60 are speci�ed. Equations (12), (16), (17),
(24), (25), and (27) are used for the results of ta-
ble 12. The methods of sections 4.2.1 and 4.2.2 are
used to form the multiple solutions.

Table 12. Inverse Position Kinematic Solutions

n �1 �2 �3 �4 �5 �6 �7 �8

1 10 20:00 30:00 40:00 50:00 60 �70:00 80:00

2 10 20:00 30:00 40:00 �164:99 60 70:00 23:04

3 10 47:16 150:00 40:00 341:26 60 �33:24 27:31

4 10 47:16 150:00 40:00 �304:51 60 33:24 �7:81

5 10 47:16 �30:00 �40:00 161:26 60 �33:24 27:31

6 10 47:16 �30:00 �40:00 �124:51 60 33:24 �7:81

7 10 20:00 210:00 �40:00 230:00 60 �70:00 80:00

8 10 20:00 210:00 �40:00 �344:99 60 70:00 23:04

15
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7.2. Velocity Kinematic Examples

The manipulator con�guration for the velocity examples is the input to forward position transformation

(example 2):

f�g = f10:0; 20:0; 30:0; 40:0; 50:0; 60:0;�70:0; 80:0gT

7.2.1. Forward velocity kinematics. Given f�g, 0J is calculated with equations (33), and given f _�g,
the forward velocity solution is calculated with equation (31):

0J =

2
666664

269:549 �963:422 195:192 �163:903 0 0 0 0
�611:971 �169:877 �245:555 �221:538 0 0 0 0

0 �649:480 54:445 �411:556 0 0 0 0
0 0:174 �0:337 0:613 �0:717 �0:257 0:945 �0:172
0 �0:985 �0:059 �0:771 �0:453 0:878 0:316 0:703
1 0 0:940 0:171 0:529 0:403 �0:085 0:690

3
777775

f _�g = f1:0; 2:0; 3:0; 4:0; 5:0; 6:0; 7:0; 8:0gT

f0v8g =

8<
:
�1727:3
�2574:5
�2781:8

9=
; f0!8g =

8<
:

1:90
5:60
14:50

9=
;

The Jacobian matrix relative to f4g is calculated with equation (37). The forward velocity solution is

calculated with i = 4 in equation (31), given the same f _�g used previously. The resulting Cartesian velocities

still relate f8g to f0g but are expressed in f4g:

4J =

2
666664

�184:524 �934:464 0 �495:300 0 0 0 0
83:761 424:183 0 0 0 0 0 0
637:259 �570:711 318:373 0 0 0 0 0
0:831 �0:383 0:643 0 0 0:643 0:383 0:831
0:529 0:321 0:766 0 1 0 �0:866 0:171
0:171 0:866 0 1 0 �0:766 0:321 �0:529

3
777775

f4v8g =

8<
:
�4034:6
932:1
451:0

9=
; f4!8g =

8<
:

15:18
3:78
�0:68

9=
;

With 0

4
R from the forward position transformation (example 2), 4f _Xg transforms to the previous 0f _Xg results

and thus proves to be a consistent solution. The solution expressed in f8g is calculated with equation (38):

f8v8g =

8<
:
�2319:3
440:2

�3431:8

9=
; f8!8g =

8<
:

3:57
�6:85
13:62

9=
;

7.2.2. Inverse velocity kinematics. Given f�g and the forward velocity results expressed in f0g, the
joint rates are calculated with equations (43). In this example, _�2 = 2 and _�5 = 5 are speci�ed. Equation (41a)

results in _�4 = 4:00. The terms for equation (43a) are

0J1UL24 =

�
�611:971 �245:555

0 54:445

�

0fJ1UL2g =

�
�169:877
�649:480

�
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0fJ1UL4g =

�
�221:538
�411:556

�

The solution for joint rates 1 and 3 is

f _�gA24 =

�
1:00
3:00

�

The terms for equation (43b) are

0JLR1 =

2
4�0:257 0:945 �0:172

0:878 0:316 0:703
0:403 �0:085 0:690

3
5

0fJLR1g =

8<
:
�0:717
�0:453
0:529

9=
;

0JLL =

2
4 0 0:174 �0:337 0:613
0 �0:985 �0:059 �0:771
1 0 0:940 0:171

3
5

The solution for joint rates 6, 7, and 8 is

f _�gW1 =

8<
:
6:00
7:00
8:00

9=
;

The same inverse velocity problem is solved in
closed form with equations (44), with respect to the
elbow coordinate frame f4g. The input is the forward

velocity results expressed in f4g; _�3 = 3 and _�8 = 8

are speci�ed. Equation (41b) yields _�4 = 4:00. The
terms for equation (44a) are

4J�1
1UL34

=

�
0:0018 0:0013
0:0020 �0:0003

�

4fJ1UL3g =

�
0

318:373

�

4fJ1UL4g =

�
0
0

�
The solution for joint rates 1 and 2 is

f _�gA34 =

�
1:00
2:00

�

The terms for equation (44b) are

4J�1
LR4

=

2
4 1:3268 1 1:1133
0:6428 0 �0:7660
1:5321 0 1:2858

3
5

4fJLR4g =

8<
:

0:831
0:171
�0:529

9=
;

4JLL =

2
4 0:831 �0:383 0:643 0
0:529 0:321 0:766 0
0:171 0:866 0 1

3
5

The solution for joint rates 5, 6, and 7 is

f _�gW4 =

8<
:
5:00
6:00
7:00

9=
;

8. Concluding Remarks

This paper presents the forward position kine-
matics (given the eight joint angles, how to �nd
the Cartesian position and orientation of the end ef-
fector) and forward velocity kinematics (given the
eight joint rates, how to �nd the Cartesian transla-
tional and rotational velocities of the end e�ector)
for the redundant eight-degree-of-freedom Advanced
Reseach Manipulator II (ARMII).

Inverse kinematic solutions, required to control
the manipulator end e�ector, are also presented. For
a redundant manipulator, the inverse kinematic solu-
tions are not unique because they involve solving for
eight unknowns (joint angles for inverse position and
joint rates for inverse velocity) in only six equations.
The approach in this paper is to specify two of the
unknowns and solve for the remaining six unknowns.
Two unknowns can be speci�ed with two restrictions.
First, the elbow joint angle and rate cannot be spec-
i�ed. The elbow joint angle is determined solely by
the commanded end-e�ector position. Likewise, the
elbow joint rate is determined by the commanded
end-e�ector Cartesian translational velocity. Second,
one unknown must be speci�ed from the four-jointed
wrist, while the second unknown must be speci�ed
from one of the arm joints (elbow joint excluded)
that translate the wrist.

In the inverse position solution, each set of two
speci�ed joint angles has eight sets of solutions. No
alternate inverse position solutions are presented for
singular con�gurations. In the inverse velocity prob-
lem, with two speci�ed joint rates, the solution is
unique, provided that the Jacobian matrix is not
singular. A discussion of singularities is based on
specifying two joint rates and analyzing the reduced
Jacobian matrix. When the reduced Jacobian ma-
trix is singular, the generalized inverse can be used
to move the manipulator away from the singularity
neighborhood.

With two redundant joints, the methods of this
paper allow considerable freedom in solving the in-
verse kinematic problems. Either joint angles or rates
must be speci�ed for one of the three arm joints
and one of the four wrist joints at each calculation

17



step. Control strategies will be developed as actual
ARMII hardware experience is accumulated. A sim-
ple method for control would be to lock two joints
for all motion, for example, joints three and �ve or
joints three and six. To accomplish this method, the
locked joint angles and rates would be speci�ed as 0
for all motion. However, the methods of this paper
allow more 
exibility.

A computer symbolic manipulation program was
used with existing standard methods in robotics for

the derivation of the equations. In addition, com-
puter simulations were developed to verify the equa-
tions. Examples demonstrate agreement between for-
ward and inverse solutions. Research into applied
redundant control strategies is required to realize the
potential of the ARMII.

NASA Langley Research Center

Hampton, VA 23681-0001

June 3, 1992
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Appendix A

ARMII Nominal Joint Limits

The nominal joint limits for the ARMII are given in table A1. The wrist pitch angle, i = 7 in table A1,

is severely limited in the positive direction. The wrist roll is continuous and unlimited in both directions, as

shown for i = 8 in table A1.

Table A1. ARMII Joint Limits

i �i

1 �165�

2 �105�

3 �165�

4 �105�

5 �165�

6 �165�

7 +22�;�130�

8 Continuous,
bidirectional
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Appendix B

Homogeneous Transformation Matrices

Eight homogeneous transformation matrices are given in this appendix, and they relate frame fig to

fi � 1g for the ARMII, where i = 1; 2; : : : ; 8. Substituting the Denavit-Hartenberg parameters of table 1

into equation (6) yields these matrices:

0

1
T =

2
64
c1 �s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

3
75

1

2T =

2
64
c2 �s2 0 0
0 0 �1 0
s2 c2 0 0
0 0 0 1

3
75

2

3T =

2
64

c3 �s3 0 0
0 0 1 d3
�s3 �c3 0 0
0 0 0 1

3
75

3

4
T =

2
64
c4 �s4 0 0
0 0 �1 0
s4 c4 0 0
0 0 0 1

3
75

4

5T =

2
64
s5 c5 0 0
0 0 1 d5
c5 �s5 0 0
0 0 0 1

3
75

5

6T =

2
64
�s6 �c6 0 0
0 0 1 0
�c6 s6 0 0
0 0 0 1

3
75

6

7
T =

2
64
s7 c7 0 0
0 0 �1 0
�c7 s7 0 0
0 0 0 1

3
75

7

8T =

2
64
c8 �s8 0 0
0 0 �1 0
s8 c8 0 0
0 0 0 1

3
75
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Appendix C

Factored Kinematic Terms

This appendix presents the kinematic terms factored for e�cient computation of the forward position

transformation matrices and the Jacobian matrices in f0g and f4g. The common terms for equation (8) and

equations (33) and (37) are as follows:

K1 = �s1s3 + c1c2c3 K2 = s1c3 + c1c2s3

K3 = c1s3 + s1c2c3 K4 = �c1c3 + s1c2s3

K5 = c2s4 + s2c3c4 K6 = �c2c4 + s2c3s4

K7 = s2c4 + c2c3s4 KA = K1s4 + c1s2c4

KB = K1c4 � c1s2s4 KC = K3s4 + s1s2c4

KD = K3c4 � s1s2s4 KE = K5s5 + s2s3c5

KF = K5c5 � s2s3s5 KG = KBs5 +K2c5

KH = �KBc5 +K2s5 KJ = KDs5 +K4c5

KL = �KDc5 +K4s5 KM = KGs6 �KAc6

KN = KGc6 +KAs6 KP = KJs6 �KCc6

KQ = KJc6 +KCs6 KR = KEs6 �K6c6

KS = KEc6 +K6s6 KT = KMs7 �KH c7

KU = KM c7 +KHs7 KV = KPs7 �KLc7

KW = KP c7 +KLs7 KX = KRs7 +KF c7

KY = KRc7 �KF s7 KZ = d3s2 + d5K7

The terms for equation (9) and equation (37) are as follows:

KK1 = s5s7 + c5s6c7

KK2 = s5c7 � c5s6s7

KK3 = �c5s7 + s5s6c7

KK4 = c5c7 + s5s6s7

KK5 = �s6s8 � c6s7c8

KK6 = �s6c8 + c6s7s8
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Appendix D

Solution of E cos� + F sin� +G = 0

The general solution to the following equation is presented in this appendix:

E cos� + F sin � +G = 0 (D1)

In equation (D1), E; F , and G are constants and � is unknown. The tangent half-angle substitution is used

to transform equation (D1) from a transcendental to a polynomial expression:

t = tan
�

2
(D2)

cos � =
1� t2

1 + t2
(D3)

sin � =
2t

1 + t2
(D4)

Substituting equations (D3) and (D4) into equation (D1) yields the following polynomial equation:

(G� E)t2+ 2Ft+ (G+E) = 0 (D5)

The equation has two solutions:

t1;2 =

"
�F �

p
E2 + F 2 �G2

G� E

#
(D6)

The �rst-order transcendental equation (eq. (D1)) has been transformed into a second-order polynomial

equation (eq. (D5)). The two corresponding values of � are found by inverting equation (D2) and substituting

equation (D6). Both results are valid solutions for equation (D1):

�1;2 = 2 tan�1

"
�F �

p
E2 + F 2 �G2

G� E

#
(D7)

Because of the multiplying factor of 2 in equation (D7), the quadrant-speci�c inverse tangent function is not

required. The two-quadrant inverse tangent function su�ces, unless G equals E.
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Appendix E

Inverse Jacobian Submatrices

The symbolic form of 4J requires the least computation for any ARMII mJ matrices, as demonstrated in

section 5.1.2. One advantage of 4J is the ability to apply closed-form solutions for the resolved motion rate,

or inverse velocity, problem in real-time computation. This appendix presents the inverses of the reduced

Jacobian submatrices 4J1ULi4, i = 1; 2; 3, and 4JLRj, j = 1; 2; 3; 4, for use in equations (44).

When the joint rate is speci�ed for the �rst, second, or third arm joint, the following inverse matrices are

used. The order of the matrices in equations (E1) through (E3) is 2�2 because the elbow joint rate _�4 is solved

(see eq. (41b)) independently of the remaining joint rates. Two of the three translational velocity equations

are independent; i = 1, 2, or 3 is speci�ed and the other two arm joint rates are solved. The �rst subscript 1

in the following equations indicates that row 1 was eliminated from equation (42):

4J�1
1UL14

=

2
664

1
d3c3s4

0

Bt3
d3d5s

2

4

1
d5s4

3
775 (E1)

4J�1
1UL24

=

2
664

1
d3s2s3s4

0

d3s2c3 + d5K5

d3d5s2s3s
2

4

1
d5s4

3
775 (E2)

4J�1
1UL34

=

2
64

Bs3
D

c3
KZ

d3s2c3 + d5K5

D
s2s3
KZ

3
75 (E3)

where

D = d3s4(Bs2 + d5c2c3s4)

The term B is de�ned from 4J (eq. (37)):

B = d3 + d5c4

The terms K5 and KZ are de�ned in appendix C.

The following inverse matrices are used when the joint rate is speci�ed for the �fth, sixth, seventh, or eighth

manipulator joint (corresponding to j = 1; 2; 3; 4):

4J�1LR1 =
1

c7

2
4 KK4 c6s7 �KK2

s5c6c7 �s6c7 c5c6c7
s5s6 c6 c5s6

3
5 (E4)

4J�1
LR2

=
1

s7

2
6664
KK4

c6
1 �KK2

c6

KK1

c6
0

�KK3

c6

�c5 0 s5

3
7775 (E5)
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4J�1
LR3

=
1

s6

2
6664
�c6s5 1 �c5c6

KK1
c7

0 �KK3
c7

s5
c7

0 c5
c7

3
7775 (E6)

4J�1LR4 =
1

c6

2
4 s5s6 1 c5s6
c5c6 0 �s5c6
s5 0 c5

3
5 (E7)

The order of these matrices is 3�3 because the three rotational velocity equations are independent. The terms

KKi are de�ned in appendix C.
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Figure 1. Advanced Research Manipulator II (ARMII).

Figure 2. ARMII kinematic structure. f�g = f0;�30; 0;�30; 0; 0;�30; 0g.
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